Exercise 3

For what values of m is $u_{xx} - m_x u_{xy} + 4x^2 u_{yy} = 0$ (a) hyperbolic, (b) parabolic, or (c) elliptic? For $m = 0$, reduce to canonical form.

Solution

 $u_{xx} - m_x u_{xy} + 4x^2 u_{yy} = 0$

Comparing this equation with the general form of a second-order PDE, $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$, we see that $A = 1, B = -m_x, C = 4x^2, D = 0$, $E = 0$, $F = 0$, and $G = 0$. Note that the discriminant, $B^2 - 4AC = m_x^2 - 16x^2$, can be positive, zero, or negative, depending on whether $m_x^2 - 16x^2 > 0$, $m_x^2 - 16x^2 = 0$, or $m_x^2 - 16x^2 < 0$, respectively. That is,

> The PDE is $\sqrt{ }$ \int $\overline{\mathcal{L}}$ hyperbolic if $m_x^2 - 16x^2 > 0$. parabolic if $m_x^2 - 16x^2 = 0$. elliptic if $m_x^2 - 16x^2 < 0$.

Let us consider each case individually.

Case I: The PDE is hyperbolic $(m_x^2 - 16x^2 > 0)$ $m_x^2 - 16x^2 > 0$

$$
m_x^2>16x^2
$$

Taking the square root of both sides gives

$$
|m_x| > 4|x|.
$$

Breaking this into two inequalities gets rid of the absolute value sign on m_x :

$$
m_x > 4|x| \quad \text{or} \quad m_x < -4|x|.
$$

To get rid of the absolute value signs on x, we have to consider the cases where $x < 0$ and $x > 0$. For $x < 0$,

$$
m_x > -4x \quad \text{or} \quad m_x < 4x.
$$

Integrating these two inequalities partially with respect to x gives

$$
m(x, y) > -2x^2 + f_1(y)
$$
 or $m(x, y) < 2x^2 + f_2(y)$,

where f_1 and f_2 are arbitrary differentiable functions of y; that is, they are of class C^1 . Let A be the set of all functions $m(x, y)$ that satisfy $m(x, y) > -2x^2 + f_1(y)$, and let B be the set of all functions $m(x, y)$ that satisfy $m(x, y) < 2x^2 + f_2(y)$.

$$
A = \{m(x, y) \mid m(x, y) > -2x^2 + f_1(y), \ x < 0, \ y \in \mathbb{R}, \ f_1 \in C^1\}
$$

$$
B = \{m(x, y) \mid m(x, y) < 2x^2 + f_2(y), \ x < 0, \ y \in \mathbb{R}, \ f_2 \in C^1\}
$$

For $x > 0$,

$$
m_x>4x \quad \text{or} \quad m_x<-4x.
$$

www.stemjock.com

Integrating these two inequalities partially with respect to x gives

$$
m(x, y) > 2x^2 + f_3(y)
$$
 or $m(x, y) < -2x^2 + f_4(y)$,

where f_3 and f_4 are arbitrary differentiable functions of y; that is, they are of class C^1 . Let C be the set of all functions $m(x, y)$ that satisfy $m(x, y) > 2x^2 + f_3(y)$, and let D be the set of all functions $m(x, y)$ that satisfy $m(x, y) < -2x^2 + f_4(y)$.

$$
C = \{m(x, y) \mid m(x, y) > 2x^2 + f_3(y), x > 0, y \in \mathbb{R}, f_3 \in C^1\}
$$

$$
D = \{m(x, y) \mid m(x, y) < -2x^2 + f_4(y), x > 0, y \in \mathbb{R}, f_4 \in C^1\}
$$

Therefore, the PDE is hyperbolic for the following set of values of $m(x, y)$:

$$
\{m(x,y) \mid m(x,y) \in (A \cup B) \cup (C \cup D)\}.
$$

Case II: The PDE is parabolic $(m_x^2 - 16x^2 = 0)$

$$
m_x^2 - 16x^2 = 0
$$

$$
m_x^2 = 16x^2
$$

Taking the square root of both sides gives

$$
|m_x| = 4|x|.
$$

Breaking this into two equations gets rid of the absolute value sign on m_x :

$$
m_x = 4|x|
$$
 or
$$
m_x = -4|x|.
$$

To get rid of the absolute value signs on x, we have to consider the cases where $x < 0$ and $x > 0$. For $x < 0$,

$$
m_x = -4x \quad \text{or} \quad m_x = 4x.
$$

Integrating these two equations partially with respect to x gives

$$
m(x, y) = -2x^2 + f_5(y)
$$
 or $m(x, y) = 2x^2 + f_6(y)$,

where f_5 and f_6 are arbitrary differentiable functions of y; that is, they are of class C^1 . Let E be the set of all functions $m(x, y)$ that satisfy $m(x, y) = -2x^2 + f_5(y)$, and let F be the set of all functions $m(x, y)$ that satisfy $m(x, y) = 2x^2 + f_6(y)$.

$$
E = \{m(x, y) \mid m(x, y) = -2x^2 + f_5(y), x < 0, y \in \mathbb{R}, f_5 \in C^1\}
$$

$$
F = \{m(x, y) \mid m(x, y) = 2x^2 + f_6(y), x < 0, y \in \mathbb{R}, f_6 \in C^1\}
$$

For $x > 0$,

 $m_x = 4x$ or $m_x = -4x$.

Integrating these two equations partially with respect to x gives

$$
m(x, y) = 2x^2 + f_7(y)
$$
 or $m(x, y) = -2x^2 + f_8(y)$,

www.stemjock.com

where f_7 and f_8 are arbitrary differentiable functions of y; that is, they are of class C^1 . Let G be the set of all functions $m(x, y)$ that satisfy $m(x, y) = 2x^2 + f_7(y)$, and let H be the set of all functions $m(x, y)$ that satisfy $m(x, y) = -2x^2 + f_8(y)$.

$$
G = \{m(x, y) \mid m(x, y) = 2x^2 + f_7(y), x > 0, y \in \mathbb{R}, f_7 \in C^1\}
$$

$$
H = \{m(x, y) \mid m(x, y) = -2x^2 + f_8(y), x > 0, y \in \mathbb{R}, f_8 \in C^1\}
$$

Therefore, the PDE is parabolic for the following set of values of $m(x, y)$:

$$
\{m(x,y) \mid m(x,y) \in (E \cup F) \cup (G \cup H)\}.
$$

Case III: The PDE is elliptic
$$
(m_x^2 - 16x^2 < 0)
$$

$$
m_x^2 - 16x^2 < 0
$$
\n
$$
m_x^2 < 16x^2
$$

Taking the square root of both sides gives

$$
\left\vert m_{x}\right\vert <4|x|.
$$

Breaking this into two inequalities gets rid of the absolute value sign on m_x :

$$
-4|x| < m_x < 4|x|
$$

$$
m_x < 4|x| \quad \text{and} \quad m_x > -4|x|.
$$

To get rid of the absolute value signs on x, we have to consider the cases where $x < 0$ and $x > 0$. For $x < 0$,

$$
m_x<-4x \quad \text{and} \quad m_x>4x.
$$

Integrating these two inequalities partially with respect to x gives

$$
m(x, y) < -2x^2 + f_9(y)
$$
 and $m(x, y) > 2x^2 + f_{10}(y)$,

where f_9 and f_{10} are arbitrary differentiable functions of y; that is, they are of class C^1 . Let I be the set of all functions $m(x, y)$ that satisfy $m(x, y) < -2x^2 + f_9(y)$, and let J be the set of all functions $m(x, y)$ that satisfy $m(x, y) > 2x^2 + f_{10}(y)$.

$$
I = \{ m(x, y) \mid m(x, y) < -2x^2 + f_9(y), \ x < 0, \ y \in \mathbb{R}, \ f_9 \in C^1 \}
$$
\n
$$
J = \{ m(x, y) \mid m(x, y) > 2x^2 + f_{10}(y), \ x < 0, \ y \in \mathbb{R}, \ f_{10} \in C^1 \}
$$

For $x > 0$,

 $m_x < 4x$ and $m_x > -4x$.

Integrating these two inequalities partially with respect to x gives

$$
m(x, y) < 2x^2 + f_{11}(y)
$$
 and $m(x, y) > -2x^2 + f_{12}(y)$.

where f_{11} and f_{12} are arbitrary differentiable functions of y; that is, they are of class C^1 . Let K be the set of all functions $m(x, y)$ that satisfy $m(x, y) < 2x^2 + f_{11}(y)$, and let L be the set of all functions $m(x, y)$ that satisfy $m(x, y) > -2x^2 + f_{12}(y)$.

$$
K = \{m(x, y) \mid m(x, y) < 2x^2 + f_{11}(y), \ x > 0, \ y \in \mathbb{R}, \ f_{11} \in C^1\}
$$
\n
$$
L = \{m(x, y) \mid m(x, y) > -2x^2 + f_{12}(y), \ x > 0, \ y \in \mathbb{R}, \ f_{12} \in C^1\}
$$

Therefore, the PDE is elliptic for the following set of values of $m(x, y)$:

$$
\{m(x,y) \mid m(x,y) \in (I \cap J) \cup (K \cap L)\}.
$$

Case IV: $m = 0$

If $m = 0$, then $B^2 - 4AC = -16x^2$ for all x, and the PDE is elliptic. The two distinct families of characteristic curves, therefore, lie in the complex plane. The characteristic equations are given by

$$
\frac{dy}{dx} = \frac{1}{2A} \left(B \pm \sqrt{B^2 - 4AC} \right)
$$

$$
\frac{dy}{dx} = \frac{1}{2} \left(\pm \sqrt{-16x^2} \right)
$$

$$
\frac{dy}{dx} = \pm 2ix.
$$

Integrating the characteristic equations, we find that

$$
y(x) = \pm ix^2 + C_0.
$$

Solving for the constant of integration (or any convenient multiple thereof),

Working with
$$
-ix^2
$$
: $C_0 = y + ix^2 = \phi(x, y)$
Working with $+ix^2$: $C_0 = y - ix^2 = \psi(x, y)$.

The PDE does not reduce to the canonical form for an elliptic equation with the typical change of variables, $\xi = \phi(x, y) = y + ix^2$ and $\eta = \psi(x, y) = y - ix^2$. Since ξ and η are complex conjugates of each other, we introduce the new real variables,

$$
\alpha = \frac{1}{2}(\xi + \eta) = y
$$

$$
\beta = \frac{1}{2i}(\xi - \eta) = x^2,
$$

which transform the PDE to the canonical form. After changing variables $(x, y) \rightarrow (\alpha, \beta)$, the PDE becomes

$$
A^{**}u_{\alpha\alpha} + B^{**}u_{\alpha\beta} + C^{**}u_{\beta\beta} + D^{**}u_{\alpha} + E^{**}u_{\beta} + F^{**}u = G^{**},
$$

where, using the chain rule,

www.stemjock.com

$$
A^{**} = A\alpha_x^2 + B\alpha_x\alpha_y + C\alpha_y^2
$$

\n
$$
B^{**} = 2A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + 2C\alpha_y\beta_y
$$

\n
$$
C^{**} = A\beta_x^2 + B\beta_x\beta_y + C\beta_y^2
$$

\n
$$
D^{**} = A\alpha_{xx} + B\alpha_{xy} + C\alpha_{yy} + D\alpha_x + E\alpha_y
$$

\n
$$
E^{**} = A\beta_{xx} + B\beta_{xy} + C\beta_{yy} + D\beta_x + E\beta_y
$$

\n
$$
F^{**} = F
$$

\n
$$
G^{**} = G.
$$

Plugging in the numbers and derivatives to these equations, we find that $A^{**} = 4x^2 = 4\beta$, $B^{**} = 0, C^{**} = 4x^2 = 4\beta, D^{**} = 0, E^{**} = 2, F^{**} = 0, \text{ and } G^{**} = 0. \text{ Thus, the PDE simplifies to }$

$$
4\beta u_{\alpha\alpha} + 4\beta u_{\beta\beta} + 2u_{\beta} = 0
$$

$$
u_{\alpha\alpha} + u_{\beta\beta} = -\frac{1}{2\beta}u_{\beta}
$$

This is the canonical form of the PDE when $m = 0$.